PLK1 Inhibition Radiosensitizes Breast Cancer Cells, but Shows Low Efficacy as Monotherapy or in Combination with other Cytotoxic Drugs

Author:

Brassesco María Sol1,Pezuk Julia Alejandra2,Salomão Karina Bezerra2,Roberto Gabriela Molinari3,Scrideli Carlos Alberto4,Tone Luiz Gonzaga4

Affiliation:

1. Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Brazil

2. Department of Genetics Ribeirao Preto School of Medicine, University of Sao Paulo, Brazil

3. Regional Blood Center of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil

4. Department of Pediatrics, Ribeirao Preto School of Medicine, University of Sao Paulo, Sao Paulo, Brazil

Abstract

Background and Purpose: Over the last decade, the inhibition of PLK1 has proven potent antiproliferative activity in vitro. However, the effectiveness of most synthetic targeted drugs has not yet been translated into clinics. Herein, we investigated the in vitro effects of two second-generation PLK1 inhibitors BI 6727 and GSK461364 in breast cancer cell lines as monotherapy or in combination with other drugs or ionizing radiation. Material and Methods: Cell survival was analyzed through XTT®, clonogenicity and caspase-3 activation assays were also studied, and drug interactions analyzed through a nonlinear regression of a sigmoid doseresponse model. Sensibilization to radiation was assessed through enhancement ratio calculation. Results: Mild effects on the viability of both cell lines tested (MCF-7 and Hs578T) were observed irrespective of the used PLK1 inhibitor. Alternatively, abrogation of PLK1 significantly reduced clonogenicity while effectively sensitized cells to ionizing radiation. Drug interactions showed dissimilar results with antagonistic effects with any drug combination in MCF-7 and clear synergic interactions between both PLK1 inhibitors and cisplatin, temozolomide or doxorubicin in Hs578T, which is TP53 mutated. Conclusion: Targeting kinases involved in mitotic checkpoints are expected to prevent mitotic exit and enhance chemosensitization. Nonetheless, despite overexpressing PLK1, in our model, expressive results after its inhibition were only seen through clonogenic assays or when BI 6727 and GSK461364 were combined with ionizing radiation. Disparate responses of cell lines to drug combinations might denote a partial reflection of the substantial differences in the vast spectrum of genetic, biological and epigenetic burden observed in breast cancer. In the near future, individual genomic/proteomic profiling will allow its further classification and will consent the initiation of novel strategies for therapy. Even though the future impact of PLK1-tailored treatment still needs validation, much more pre-clinical and clinical research for this kinase are warranted.

Funder

CNPq

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3