Elucidation of S-Allylcysteine Role in Inducing Apoptosis by Inhibiting PD-L1 Expression in Human Lung Cancer Cells

Author:

Khan Fahad1,Pandey Pratibha1ORCID,Mishra Rashmi1,Arif Mohd.1,Kumar Ambuj1,Jafri Asif2,Mazumder Rupa3

Affiliation:

1. Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306,India

2. Molecular Endocrinology Laboratory, Department of Zoology, University of Lucknow, Lucknow,India

3. Noida Institute of Engineering & Technology (Pharmacy Institute), 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306,India

Abstract

Aim: The aim of this study is to explore the therapeutic potential of S-allylcysteine (SAC) organosulphur compound as a potent immune checkpoint inhibitor PD-L1. Background: Natural compounds have been showing tremendous anticancerous potential via suppressing the expression of genes involved in the development and progression of several carcinomas. This has further motivated us to explore the therapeutic potential of organosulphur compounds as potent immune checkpoint inhibitors. Objective: Our study was designed to elucidate the potential of S-allylcysteine (SAC) as significant PD-L1 (immune checkpoint) inhibitor in human lung cancer A549 cancer cell line by using both the in vitro and in silico approaches. Methods: Anticancerous effect of the SAC on lung cancer cells was determined by using the MTT cell viability. Apoptotic induction was confirmed by Hoechst staining, percent caspase-3 activity as well as gene expression analysis by real time PCR. Reactive Oxygen Species (ROS) was estimated by DCFDA method. Additionally, ligand-target protein interaction was analysed by molecular docking. Result: Cell growth and proliferation was significantly reduced in SAC treated A549 cells in a concentration and time-dependent manner. The effect of SAC on apoptotic induction was analyzed by enhanced nuclear condensation, increased percent caspase-3 activity as well as modulation of apoptotic genes. Furthermore, SAC treatment also resulted in reduced expression of PD-L1 and HIF-1α. Additionally, in silico analysis also supported the in vitro findings by showing efficient docking with PD-L1 immune checkpoint target. Conclusion: Therefore, our results clearly suggested that SAC could serve as a novel chemotherapeutic candidate for the treatment of lung cancer by inhibiting immune checkpoint target PD-L1 in human lung cancer cells. Additionally, our study also explained a novel molecular mechanism of its antitumor activity.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3