Synthesis and Cytotoxic Properties of New Substituted Glycosides-Indole Conjugates as Apoptosis Inducers in Cancer Cells

Author:

Srour Aladdin M.1ORCID,El-Bayaa Mohamed N.2ORCID,Omran Mervat M.3ORCID,Sharaky Marwa M.3ORCID,El-Sayed Wael A.2ORCID

Affiliation:

1. Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt

2. Department of Photochemistry, National Research Centre, Dokki, P.O. Box.12622, Cairo, Egypt

3. Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt

Abstract

Background & Objective: Glycosyl heterocycles, being as nucleoside analogs with modified glycon and hybrid heterocycle motifs, are of considerable interest, and thus, the targeted compounds were synthesized via a convenient and efficient approach. Methods: New indolyl-thiadiazolyl thioglycosides scaffolds were synthesized, starting with the reaction of indole-3-carbaldehyde with 2-aminothiadiazole-5-thiole followed by glycosylation and deprotection. Likewise, new molecular hybrids comprising indole, thiadiazole, triazole and glycosyl moieties were synthesized utilizing click chemistry strategy. The cytotoxic activities of the newly synthesized compounds were studied on colon carcinoma HCT116, breast carcinoma MCF-7, lung carcinoma A549 and hepatocellular carcinoma HepG2 cell lines using Sulphorhodamine-B (SRB) assay. Results: The 1,3,4-thiadiazole thioglycoside and the 1,2,3-triazole N1-glycoside possessing xylose moiety, compounds 8 and 15 revealed the most potent bio-activity among the new chemical entities; therefore, they undertook for further analysis of apoptosis. Conclusion: IC50s of Compound 8 were 38, 36, 33 and 158μg/ml, while they were 41, 44, 32 and 25μg/ml for compound 15 on HepG2, MCF7, HCT116 and A549 cell lines, respectively; furthermore, the total apoptosis rate (%) for control untreated cells were 9.63, 28.4, 25.4 (%), compounds 8 and 15 respectively, they produced a significant increase in total and early apoptosis rate (%) compared to control (P=0.0001). At the same time, no significant difference was detected in the late apoptosis rate (%), which means that both derivatives have the potential to be developed into potent anticancer agents.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3