Network-Based Analysis Reveals Gene Signature in Tip Cells and Stalk Cells

Author:

Xu Lingyun1,Li Chen2ORCID

Affiliation:

1. Fuyang People’s Hospital, Department of Hematology NO.501, sanqing road, Fuyang City, Anhui Province, China

2. Fuyang Hospital of Anhui Medical University, Department of Hematology NO.501, sanqing road, Fuyang City, Anhui Province, China

Abstract

Background: Angiogenesis occurs during various physiological or pathological processes such as wound healing and tumor growth. Differentiation of vascular endothelial cells into tip cells and stalk cells initiates formation of new blood vessels. Tip cells and stalk cells are endothelial cells with different biological characteristics and functions. Objective: The aim of this study was to determine the mechanisms of angiogenesis by exploring differences in gene expression of tip cells and stalk cells. Methods: Raw data were retrieved from NCBI Gene Expression Omnibus (GSE19284). Data were reanalyzed using bioinformatics methods that employ robust statistical methods, including identification of differentially expressed genes (DEGs) between stalk and tip cells, weighted gene correlation network analysis (WGCNA), gene ontology and pathway enrichment analysis using DAVID tools, integration of protein-protein interaction (PPI) networks and screening of hub genes. DEGs of stalk and tip cells were grouped as dataset A. Gene modules associated with differentiation of stalk and tip cells screened by WGCNA were named dataset B. Further, we retrieved existing markers of angiogenesis from previous experimental studies on tip and stalk cells which we named dataset C. Intersection of datasets A, B and C was used as a candidate gene. Subsequently, we verified the results applying quantitative polymerase chain reaction (Q ‐PCR) to our clinical specimen. In general, the Q‐PCR results coincide with the majority of the expression profile. Results: We identified five candidate genes, including ESM1,CXCR4,JAG1,FLT1 and PTK2 and two pathways, including Rap1 signaling pathway and PI3K-Akt signaling pathway in vascular endothelial cells that differentiate into tip cells and stalk cells using bioinformatic analysis. Conclusion: Bioinformatics approaches provide new avenues for basic research in different fields such as angiogenesis. The findings of this study provide new perspectives and basis for the study of molecular mechanisms of vascular endothelial cell differentiation into stalk and tip cells. Genes and pathways identified in this study are potential biomarkers and therapeutic targets for angiogenesis in tumor.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3