Reactive Oxygen Species (ROS): Key Components in Cancer Therapies

Author:

Sahoo Biswa Mohan1,Banik Bimal Krishna2ORCID,Borah Preetismita3ORCID,Jain Adya4

Affiliation:

1. Roland Institute of Pharmaceutical Sciences (Biju Patnaik University of Technology Nodal Centre of Research), Berhampur-760010, Odisha, India

2. Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar, Kingdom of Saudi Arabia

3. CSIR-Central Scientific Instruments Organization, Chandigarh, India

4. Department of Chemistry, MRK Educational Institutions, IGU Rewari, Haryana, India

Abstract

Abstract: Reactive Oxygen Species (ROS) refers to the highly reactive substances which contain oxygen radicals. Hypochlorous acid, peroxides, superoxide, singlet oxygen, alpha-oxygen, and hydroxyl radicals are the major examples of ROS. Generally, the reduction of oxygen (O2) in molecular form produces superoxide (•O2 −) anion. ROS are produced during a variety of biochemical reactions within the cell organelles, such as endoplasmic reticulum, mitochondria, and peroxisome. Naturally, ROS are also formed as a byproduct of the normal metabolism of oxygen. The production of ROS can be induced by various factors such as heavy metals, tobacco, smoke, drugs, xenobiotics, pollutants, and radiation. From various experimental studies, it is reported that ROS acts as either a tumor-suppressing or a tumor-promoting agent. The elevated level of ROS can arrest the growth of tumors through the persistent increase in cell cycle inhibition. The increased level of ROS can induce apoptosis by both intrinsic and extrinsic pathways. ROS is considered to be a tumor-suppressing agent as the production of ROS is due to the use of most of the chemotherapeutic agents in order to activate cell death. The cytotoxic effect of ROS provides impetus towards apoptosis, but in higher levels, ROS can cause initiation of malignancy that leads to uncontrolled cell death in cancer cells. In contrast, some species of ROS can influence various activities at the cellular level, including cell proliferation. This review highlights the genesis of ROS within cells by various routes and their role in cancer therapies.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3