Antiangiogenic Effect of Isomalyngamide A Riboside CY01 in Breast Cancer Cells via Inhibition of Migration, Tube Formation and pVEGFR2/pAKT Signals

Author:

Shih Ching-Ying1,Chang Tzu-Ting2,Chen Chia-Ling2,Li Wen-Shan2ORCID

Affiliation:

1. Department of Chemistry, National Central University, Taoyuan City 32001, Taiwan

2. Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan

Abstract

Background: To block the metastatic and angiogenic pathways during the tumor progression arouses considerable pharmacological interests in the development of anticancer drugs. Objective: To develop alternative antiangiogenic and antimetastic agents, we designed and prepared a series of nature inspired isomalyngamide A analogs containing ribose conjugate with 1,2-diaminoethane or 1,3- diaminopropane linkers (1-8). Methods: The target glycosylated isomalyngamide A analogs 1-8 were constructed through condensation of the malonic acids 16-19 and the corresponding aminoethoxyl ribosides 20 and 21, using HBTU/DIPEA as the coupling agent. The cell growth inhibition assay, cell migration assay, transwell invasion assay, adhesion assay, tube formation assay and western blot analysis were used to validate the biological actions of compounds. Results: The most effective compound, isomalyngamide A riboside 1 (CY01), possessing a D-ribose core structure and a 1,3-diaminopropane linker, showed significant suppression of MDA-MB-231 cell migration and inhibited tube formation of Human Umbilical Vascular Endothelial Cells (HUVECs) in a dose-dependent manner. Effect of the latter is comparable to that of sorafenib, an orally active multikinase inhibitor and an inhibitor of angiogenesis. CY01 also showed slight inhibition on collagen type IV- and laminin-mediated cell adhesion. These actions may be regulated through the blockade of the VEGF/VEGFR2 signaling pathway by inhibiting the VEGF induced phosphorylation of p-VEGFR2 and p-AKT. Conclusion: In this effort, we have discovered synthetic and glycosylated marine metabolites which may serve as an alternative antiangiogenic and antimetastic agent during multitherapy.

Funder

Academia Sinica

Ministry of Science and Technology

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3