Rationale Design, Synthesis, Cytotoxicity Evaluation, and Molecular Docking Studies of 1,3,4-oxadiazole Analogues

Author:

Ahsan Mohamed Jawed1,Choupra Arun1,Sharma Rakesh Kumar1,Jadav Surender Singh2,Padmaja Pannala3,Hassan Mohd. Zaheen4,Al-Tamimi Abdulmalik Bin Saleh5,Geesi Mohammed H.6,Bakht Mohammed Afroz6

Affiliation:

1. Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan 302 039, India

2. Department of Pharmaceutical Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835 215, India

3. Department of Chemistry, JNTUH College of Engineering, Kukatpally, Hyderabad (T.S), 500 085, India

4. Department of Pharmaceutical Chemistry, Alwar Pharnacy College, Alwar, Rajasthan 301 030, India

5. Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box- 173, Al-Kharj 11942, Saudi Arabia

6. Department of Chemistry, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia

Abstract

Background: 1,3,4-Oxadiazole heterocycles possess a broad spectrum of biological activities. They were reported as potent cytotoxic agents and tubulin inhibitors; hence it is of great interest to explore new oxadiazoles as cytotoxic agents targeting tubulin polymerization. Objective: Two new series of oxadiazoles (5a-h and 12a-h) were synthesized, structurally related to the heterocyclic linked aryl core of IMC-038525, NSC 776715, and NSC 776716, with further modification by incorporating methylene linker. Method: The 2,5-disubstituted-1,3,4-oxadiazoles (5a-h and 12a-h) were synthesized by refluxing an equimolar mixture of the intermediates [(4) and (8a-d)] and aromatic aldehydes in water-ethanol system using sodium bisulphite catalyst. The cytotoxicity evaluation was carried out according to the National Cancer Institute (NCI US) Protocol, while the tubulin polymerization assay kits from Cytoskeleton ™(bk011p) was used to perform an in vitro tubulin polymerization assay. Results: 2-(5-{[(4-Chlorophenyl)amino]methyl}-1,3,4-oxadiazol-2-yl)phenol (5f) and 2-[(2,4-dichlorophenoxy) methyl]-5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole (12c) showed maximum cytotoxicity with the mean percent growth inhibitions (GIs) of 71.56 and 72.68 respectively at 10 µM drug concentrations. Both the compounds (5f and 12c) showed superior cytotoxicity than clinically prevalent anticancer drugs, Imatinib and Gefitinib in one dose assay. The compound 12c showed promising results in five dose assay, with GI50 values varies between 1.61 and >100 µM. Furthermore, the compounds, 5f and 12c also inhibited the polymerization of tubulin with, an IC50 of 2.8 and 2.2 µM, respectively. Conclusion: The oxadiazoles reported herein are tubulin inhibitors and cytotoxic agents. These findings will be helpful in future drug design of more potent tubulin inhibitor cytotoxic agents.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3