Deeper Insight in Metastatic Cancer Progression; Epithelial-to- Mesenchymal Transition and Genomic Instability: Implications on Treatment Resistance

Author:

Omabe Kenneth1,Uduituma Sandra1,Igwe David2,Omabe Maxwell3

Affiliation:

1. Alex-Ekueme Federal University, Ndufu-Alike Ikwo, Nigeria

2. Child and Adolescent Mental health services [CAMHS], Derbyshire Healthcare NHS, Derbyshire, United Kingdom

3. University of Saskatchwan, Saskatchwan, Canada

Abstract

Therapy resistance remains the major obstacle to successful cancer treatment. Epithelial-to- mesenchymal transition [EMT], a cellular reprogramming process involved in embryogenesis and organ development and regulated by a number of transcriptional factors [EMT-TFs] such as ZEB1/2, is recognized for its role in tumor progression and metastasis. Recently, a growing body of evidence has implicated EMT in cancer therapy resistance, but the actual mechanism that underlies this finding has remained elusive. For example, whether it is, the EMT states in itself or the EMT-TFs that modulate chemo or radio-resistance in cancer is still contentious. Here, we summarise the molecular mechanisms of the EMT program and chemotherapeutic resistance in cancer with specific reference to DNA damage response [DDR]. We provide an insight into the molecular interactions that exist between EMT program and DNA repair machinery in cancer and how this interaction influences therapeutic response. We review conflicting studies linking EMT and drug resistance via the DNA damage repair axis. We draw scientific evidence demonstrating how several molecular signalling, including EMT-TFs, work in operational harmony to induce EMT and confer stemness properties on the EMT-susceptible cells. We highlight the role of enhanced DNA damage repair system associated with EMT-derived stem cell-like states in promoting therapy resistance and suggest a multi-targeting modality in combating cancer treatment resistance.

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Molecular Medicine,General Medicine,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mutation Analysis of Radioresistant Early-Stage Cervical Cancer;International Journal of Molecular Sciences;2021-12-21

2. Dynamic EMT: a multi‐tool for tumor progression;The EMBO Journal;2021-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3