Single-cell Analysis of β2-Adrenergic Receptor Dynamics by Quantitative Fluorescence Microscopy

Author:

Haji Esraa1,Mahri Saeed Al1,Aloraij Yumna1,Malik Shuja1,Mohammad Sameer1ORCID

Affiliation:

1. Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia

Abstract

Background:G protein-coupled receptors (GPCRs) represent the largest family of surface proteins and are involved in the regulation of key physiological processes. GPCRs are characterized by seven transmembrane domains, an extracellular N-terminus and an intracellular C-terminus. Cellular response of these receptors to their ligands is largely determined by their surface expression and postactivation behavior including expression, desensitization and resensitization.Objective:To develop a quantitative fluorescence Microscopy assay to study β2- Adrenergic receptor expression and desensitization.Method:β2-Adrenergic receptor cDNA was engineered to put an HA tag at the extracellular N-terminus and GFP Tag at the intracellular C-terminus. GFP fluorescence serves as a measure of total cellular expression; whereas staining with CY3 conjugated anti-HA antibodies without permeabilizing the cells represents the surface expression of β2-AR. The images are quantified and amount of CY3 (surface) and GFP (total) fluorescence for each cell determined using image processing software.Results:The method is sensitive and allows for the simultaneous measurement of surface and total expression of β2-AR.Conclusion:A highly accurate method is described for measuring β2-AR surface and total expression based on single-cell quantitative immunofluorescence. The method can be used to determine agonist-induced desensitization and resensitization process as well as receptor kinetics like endocytosis and exocytosis of β2-Adrenergic receptor and can be applied to essentially any other GPCR.

Funder

King Abdullah International Medical Research Center

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Molecular Medicine,General Medicine,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3