Exosomes derived from Mouse Bone Marrow Mesenchymal Stem Cells Attenuate Nucleus Pulposus Cell Apoptosis via the miR-155- 5p/Trim32 Axis

Author:

Yang Jun1,Chen Fei1,Li Shangze1,Wu Ji1,Guo Qunfeng1,Wang Haibin1,Ni Bin1

Affiliation:

1. Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China

Abstract

Background: Lower back pain, shown to be strongly associated with IVDD, affects approximately 60%–80% of adults and has a considerable societal and economic impact. Evidence suggests that IVDD, caused by abnormal apoptosis of nucleus pulposus cells (NPCs), can be treated using MSC-derived exosomes. Objective: This study aimed to evaluate the role of miR155-5p/Trim32 in intervertebral disc disease (IVDD) and elucidate the underlying molecular mechanisms. Deregulating miR-155 has been shown to promote Fas-mediated apoptosis in human IVDD. Evidence also suggests that tripartite motif (TRIM)-containing protein 32 (Trim32) is regulated by miR-155. However, the role of miR155-5p/Trim32 in IVDD remains unclear. Methods: Cell viability was checked using CCK-8 kits, and flow cytometry was used to analyze cell cycle and apoptosis. Cell migration was measured with a Transwell assay, while a luciferase assay was adopted to study how miR-155-5p interacts with Trim32. The roles of Trim32 and miR-155-5p were studied by silencing or up-regulating them in NPCs, while qPCR and immunoblots were used to evaluate mRNA and protein changes, respectively. Results: TNF-α treatment significantly inhibited cell viability but promoted Trim32 expression in primary mouse NPCs. Administration of bone marrow mesenchymal stem cells (BMSCs) attenuated primary NPC cell cycle arrest and apoptosis induced by TNFα. BMSCs-derived exosomes could be taken up by NPCs to inhibit TNF-α-induced cell cycle arrest and apoptosis through miR-155-5p. Examination of the underlying mechanism showed that miR-155-5p targeted Trim32. Moreover, Trim32 overexpression inhibited the effect of BMSCs-derived exosomes on primary mouse NPC cell apoptosis induced by TNF-α. Conclusion: Overall, these findings suggest that exosomes from BMSCs can suppress TNF-α-induced cell cycle arrest and apoptosis in primary mouse NPCs through the delivery of miR-155-5p by targeting Trim32. This study provides a promising therapeutic strategy for IVDD.

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Molecular Medicine,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3