Texture Depth Measurement using a Micro-volume Measurement Technique for Gyratory Compactor Specimens

Author:

Akraym Hatim. M.ORCID,Muniandy Ratnasamy,Jakarni Fauzan Mohd,Hassima Salihudin

Abstract

Introduction: Road safety plays a pivotal role in transportation infrastructure, as the quality of road surfaces is a crucial factor in ensuring safe driving conditions. One of the main indicators of road quality is the Mean texture depth (MTD), which greatly affects a vehicle's traction and skid resistance. Multiple methods are available for analyzing fabric depth, with the volumetric method, known as the sand patch test and standardized under ASTM E 965 – 96, being the traditional approach. Aim: This research aims to adapt a Sand Patch test procedure to evaluate surface texture depth on laboratory specimens with a 100 mm diameter and determine the required amount of sand, both in terms of weight and volume, to conduct this test effectively. Methods: To achieve this, the relationship between the amount of sand required and the sample size was determined. Two different types of asphalt mixtures were studied Stone Mastic Asphalt (SMA) and Asphalt Concrete (AC), with five gradation limits for each. Results: In the case of the AC10 mixture, the MTD ranged from 0.60 to 1.139 mm, while in SMA 20, the MTD ranged from 1.91 to 2.574 mm. These results are consistent with previous studies, confirming the reliability of the testing methodology, even when working with limited sample areas. Conclusion: In conclusion, the study highlights the potential simplicity and cost-effectiveness of using the Sand Patch micro-volume measurement method. When employed at the initial design stage, this method can provide valuable insights into surface texture, enhancing the design process and potentially further improving road safety.

Publisher

Bentham Science Publishers Ltd.

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3