In Silico Discovery of Novel Phytoconstituents of Amyris pinnata as a Mitotic Spindle Kinase Inhibitor

Author:

Parmar Ghanshyam R.1ORCID,Shah Ashish P.1ORCID,Sailor Girish U.1ORCID,Seth Avinash Kumar1ORCID

Affiliation:

1. Department of Pharmacy, Sumandeep Vidyapeeth, Vadodara-391760, Gujarat, India

Abstract

Background: Despite many successes in the discovery of numerous cancer chemotherapeutic agents from natural sources, some of the moieties were dropped because of its inefficiency or serious toxicity. Mitosis is an ordered series of fundamentally mechanical events in which identical copies of the genome are moved to two discrete locations within the dividing cell. The crucial role of the mitotic spindle in cell division has identified, which is an important target in cancer chemotherapy. In the present study, we are reporting molecular docking studies and in silico pharmacokinetic profiles of selected phytoconstituents obtained from Amyris pinnata. Methods: Molecular docking studies of selected phytoconstituents were performed using iGEMDOCK. The crystal structure of the protein was exported from the protein data bank (PDB id: 4C4H). In silico pharmacokinetic profile of selected phytoconstituents was performed using the SWISSADME server. Results: Compound AMNP6 showed higher binding affinity as compared to the standard ligand. All the selected phytoconstituents have passed the Lipinski rule of five and shown no violations. Conclusion: : Good binding affinity and drug likeliness of the AMNP6 suggest that it can be further investigated and explored as mitotic spindle kinase inhibitor in cancer disease.

Publisher

Bentham Science Publishers Ltd.

Subject

Psychiatry and Mental health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3