A Robust Real Time Object Detection and Recognition Algorithm for Multiple Objects

Author:

Modwel Garv1,Mehra Anu2,Rakesh Nitin3,Mishra Krishna K.4

Affiliation:

1. Department of Computer Science and Engineering, Amity University, Noida, India

2. Department of Electronics Engineering, Amity University, Noida, India

3. Department of Computer Science and Engineering, Sharda University, Greater Noida, India

4. Department of Computer Science and Engineering, MNNIT, Allahabad, United States

Abstract

Background: Object detection algorithm scans every frame in the video to detect the objects present which is time consuming. This process becomes undesirable while dealing with real time system, which needs to act with in a predefined time constraint. To have quick response we need reliable detection and recognition for objects. Methods: To deal with the above problem a hybrid method is being implemented. This hybrid method combines three important algorithms to reduce scanning task for every frame. Recursive Density Estimation (RDE) algorithm decides which frame need to be scanned. You Look at Once (YOLO) algorithm does the detection and recognition in the selected frame. Detected objects are being tracked through Speed Up Robust Feature (SURF) algorithm to track the objects in subsequent frames. Results: Through the experimental study, we demonstrate that hybrid algorithm is more efficient compared to two different algorithm of same level. The algorithm is having high accuracy and low time latency (which is necessary for real time processing). Conclusion: The hybrid algorithm is able to detect with a minimum accuracy of 97 percent for all the conducted experiments and time lag experienced is also negligible, which makes it considerably efficient for real time application.

Publisher

Bentham Science Publishers Ltd.

Subject

General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3