A Recommendation Approach Using Forwarding Graph to Analyze Mapping Algorithms for Virtual Network Functions

Author:

Bouali Lyes1,Khebbache Selma2,Bouzefrane Samia1,Daoui Mehammed3

Affiliation:

1. CEDRIC Lab, CNAM, Paris, France

2. Technological Research Institute - IRT SystemX, Palaiseau, France

3. LARI Lab, UMMTO, Tizi-Ouzou, Algeria

Abstract

Background: Network Functions Virtualization (NFV) is a paradigm shift in the way network operators deploy and manage their services. The basic idea behind this new technology is the separation of network functions from the traditional dedicated hardware by implementing them as a software that is able to run on top of general-purpose hardware. Thus, the resulting pieces of software are called Virtual Network Functions (VNFs). NFV is expected, on one hand, to lead to increased deployment flexibility and agility of network services and, on the other hand, to reduce operating and capital expenditures. One of the major challenges in NFV adoption is the NFV Infrastructure's Resource Allocation (NFVI-RA) for the requested VNF-Forwarding Graph (VNF-FG). This problem is named VNF-forwarding graph mapping problem and is known to be an NP-hard problem. Objective: To address the VNF-FG mapping problem, the objective is to design a solution that uses a meta-heuristic method to minimize the mapping cost. Methods: To cope with this NP-Hard problem, this paper proposes an algorithm based on Greedy Randomized Adaptive Search Procedure (GRASP), a cost-efficient meta-heuristic algorithm, in which the main objective is to minimize the mapping cost. Another method named MARA (Most Available Resource Algorithm) was devised with the objective of reducing the Substrate Network’s resources use at the bottleneck clusters. Results: The Performance evaluation is conducted using real and random network topologies to confront the proposed version of GRASP with another heuristic, existing in the literature, based on the Viterbi algorithm. The results of these evaluations reveal the efficiency of the proposed GRASP ‘s version in terms of reducing the cost mapping and performs consistently well across all the evaluations and metrics. Conclusion: The problem of VNF-FG mapping is formalized, and a solution based on GRASP meta- heuristic is proposed. Performance analysis based on simulations are given to show the behavior and efficiency of this solution.

Publisher

Bentham Science Publishers Ltd.

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3