Urine Cells-derived iPSCs: An Upcoming Frontier in Regenerative Medicine

Author:

Gautam Sanjeev1ORCID,Biswas Sangita2,Singh Birbal3,Guo Ying4,Deng Peng1,Deng Wenbin1

Affiliation:

1. Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, United States

2. Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, United States

3. ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh 176061, India

4. School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, Guangdong 510006, China

Abstract

There is a momentous surge in the development of stem cell technology, such as therapeutic and diagnostic tools. Stem cell-derived cells are currently used in various clinical trials. However, key issues and challenges faced involve the low differentiation efficiency, integration and functioning of transplanted stem cells-derived cells. Extraction of bone marrow, adipose or other mesenchymal stem cells (MSCs) involves invasive methods, specialized skills and expensive technologies. Urine-derived cells, on the other hand, are obtained by non-invasive methods; samples can be obtained repeatedly from patients of any age. Urine-derived cells are used to generate reprogrammed or induced pluripotent stem cells (iPSCs) which can be cultured and differentiated into various types of cell lineages for biomedical investigations and drug testing in vitro or in vivo using model animals of human diseases. Urine cells-derived iPSCs (UiPSCs) have emerged as a major area of research having immense therapeutic significance. Given that preliminary preclinical studies are successful in terms of safety and as a regenerative tool, the UiPSCs will pave the way to the development of various types of autologous stem cell therapies.

Funder

Shriners Hospitals for Children Northern California

NIH

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3