Advances of Inorganic Materials in the Detection and Therapeutic Uses against Coronaviruses

Author:

Sathish Veerasamy1ORCID,Manivannan Chandrakumar1ORCID,Balasubramaniyan Malathi1ORCID,Kumar Arumugam Ramesh1ORCID,Thanasekaran Pounraj2ORCID

Affiliation:

1. Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam - 638 401, India

2. Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan

Abstract

Coronaviruses (CoVs) are enveloped viruses with particle-like characteristics and a diameter of 60-140 nm, positively charged, and single-stranded RNA genomes, which caused a major outbreak of human fatal pneumonia in the beginning of the 21st century. COVID-19 is currently considered a continuous potential pandemic threat across the globe. Therefore, considerable efforts have been made to develop innovative methods and technologies for suppressing the spread of viruses as well as inactivating the viruses but COVID-19 vaccines are still in the development phase. This perspective focuses on the sensing, detection and therapeutic applications of CoVs using inorganic- based nanomaterials, metal complexes, and metal-conjugates. Synthetic inorganic- based nanoparticles interact strongly with proteins of viruses due to their morphological similarities, and therefore, numerous antivirals have been tested for efficacy against different viruses in vitro through colorimetric and electrochemical assays. Metal complexes- based agents such as bismuth complexes form an attractive class of drugs with a number of therapeutic applications, including the inhibition and duplex-unwinding activity of SARS-CoV helicase by quantitative real-time PCR (Q-RT-PCR), phosphate release assay and radioassay studies. Metal-conjugates show major effects on inhibiting the 3Clike protease of SARS-CoV and the replication of RNA-dependent RNA polymerase (RdRp). We anticipate that these approaches will provide rapid and accurate antiviral strategies in the development of these innovative sensors for the detection, inhibition and antiviral activities of coronaviruses.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3