Advancements within Modern Machine Learning Methodology: Impacts and Prospects in Biomarker Discovery

Author:

Ledesma Dakila1ORCID,Symes Steven2ORCID,Richards Sean2ORCID

Affiliation:

1. Department of Computer Science and Engineering, University of Tennessee at Chattanooga, Tennessee, TN 37996, United States

2. Department of Obstetrics and Gynecology, University of Tennessee College of Medicine, Chattanooga, Tennessee, TN 37996, United States

Abstract

Background: The adoption of biomarkers as part of high-throughput, complex microarray or sequencing data has necessitated the discovery and validation of these data through machine learning. Machine learning has remained a fundamental and indispensable tool due to its efficacy and efficiency in both feature extraction of relevant biomarkers as well as the classification of samples as validation of the discovered biomarkers. Objectives: This review aims to present the impact and ability of various machine learning methodologies and models to process high-throughput, high-dimensionality data found within mass spectrometry, microarray, and DNA/RNA-sequence data; data that precluded biomarker discovery prior to the use of machine learning. Methods: A vast array of literature highlighting machine learning for biomarker discovery was reviewed, resulting in the eligibility of 21 machine learning algorithms/networks and 3 combinatory architectures, spanning 17 fields of study. This literature was screened to investigate the usage and development of machine learning within the framework of biomarker discovery. Results: Out of the 93 papers collected, a total of 62 biomarker studies were further reviewed across different subfields-49 of which employed machine learning algorithms, and 13 of which employed neural network-based models. Through the application, innovation, and creation of tools in biomarker-related machine learning methodologies, its use allowed for the discovery, accumulation, validation, and interpretation of biomarkers within varied data formats, sources, as well as fields of study. Conclusion: The use of machine learning methodologies for biomarker discovery is critical to the analysis of various types of data used for biomarker discovery, such as mass spectrometry, nucleotide and protein sequencing, and image (e.g. CT-scan) data. Further studies containing more standardized techniques for evaluation, and the use of cutting- edge machine learning architectures may lead to more accurate and specific results.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3