Affiliation:
1. Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
Abstract
Tumor cell chemoresistance is a major challenge in cancer therapeutics. Major
select metal-based drugs are potent anticancer mediators yet they exhibit adverse sideeffects
and are efficient against limited types of malignancies. A need, therefore, arises
for novel metallodrugs with improved efficacy and decreased toxicity. Enhancement of
antitumor drugs based on anticancer metals is currently a very active research field, with
considerable efforts having been made toward elucidating the mechanisms of immune action
of complex metalloforms and optimizing their immunoregulatory bioactivity through
appropriate synthetic structural modification(s) and encapsulation in suitable nanocarriers,
thereby enhancing their selectivity, specificity, stability, and bioactivity. In that respect,
comprehending the molecular factors involved in drug resistance and immune response
may help us develop new approaches toward more promising chemotherapies, reducing
the rate of relapse and overcoming chemoresistance. In this review, a) molecular immunerelated
mechanisms in the tumor microenvironment, responsible for lower drug sensitivity
and tumor relapse, along with b) strategies for reversing drug resistance and targeting
immunosuppressive tumor networks, while concurrently optimizing the design of complex
metalloforms bearing anti-tumor activity, are discussed in an effort to identify and
overcome chemoresistance mechanisms for effective tumor immunotherapeutic approaches.
Publisher
Bentham Science Publishers Ltd.
Subject
Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献