The Validation Path of Hypoxia PET Imaging: Focus on Brain Tumours

Author:

Quartuccio Natale1,Asselin Marie-Claude1

Affiliation:

1. Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom

Abstract

Background: Gliomas are brain tumours arising from the glia, the supportive tissue of the central nervous system (CNS), and constitute the commonest primary malignant brain tumours. Gliomas are graded from grade I to IV according to their appearance under the microscope. One of the most significant adverse features of high-grade gliomas is hypoxia, a biological phenomenon that develops when the oxygen concentration becomes insufficient to guarantee the normal tissue functions. Since tumour hypoxia influences negatively patient outcome and targeting hypoxia has potential therapeutic implications, there is currently great interest in imaging techniques measuring hypoxia. Objectives: The aim of this review is to provide up to date evidence on the radiotracers available for measuring hypoxia in brain tumours by means of positron emission tomography (PET), the most extensively investigated imaging approach to quantify hypoxia. Methods: The review is based on preclinical and clinical papers and describes the validation status of the different available radiotracers. Results: To date, [F-18] fluoromisonidazole ([18F]FMISO) remains the most widely used radiotracer for imaging hypoxia in patients with brain tumours, but experience with other radiotracers has expanded in the last two decades. Validation of hypoxia radiotracers is still on-going and essential before these radiopharmaceuticals can become widely used in the clinical setting. Conclusion: Availability of a non-invasive imaging method capable of reliably measuring and mapping different levels of oxygen in brain tumours would provide the critical means of selecting patients that may benefit from tailored treatment strategies targeting hypoxia.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3