Na, K-ATPase as a Biological Target for Gold(III) Complexes: A Theoretical and Experimental Approach

Author:

Bondžić Aleksandra M.1ORCID,Vasić Anićijević Dragana D.1ORCID,Janjić Goran V.2ORCID,Zeković Ivana1ORCID,Momić Tatjana1ORCID,Nikezić Ana Vujačić1ORCID,Vasić Vesna M.1ORCID

Affiliation:

1. VINCA Institute of Nuclear Sciences, National Institute of thе Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia

2. Institute of Chemistry, Technology and Metallurgy, National Institute of thе Republic of Serbia, University of Belgrade, Njegoseva 16, Belgrade, Serbia

Abstract

Background: Gold-based complexes represent a new class of potential metallodrugs. Although their action mechanism is not entirely understood, it was shown that gold complexes inhibit some enzymes’ activities. Among them, Na,K-ATPase is emerging as an essential target for various anticancer drugs. The functionalization of nanoparticles by gold(III) complexes could facilitate their delivery into the cells and enable the following of their distribution in the target tissues. Objective: The paper presents an overview of Na,K-ATPase interaction with representative and structurally related cytotoxic gold(III) complexes. The results obtained by the employment of theoretical methods (DFT and docking studies) combined with the experimental approach involving a variety of nanotechnology-base techniques (UV/Vis, Raman and fluorescence spectroscopy, CD, AFM, DLS) are discussed. Detailed information was obtained on the enzyme’s conformational and structural changes upon binding the gold(III) complexes. The experimentally determined reaction parameters (constants of dissociation and the reaction stoichiometry) were predicted theoretically. Conclusion: The presented results offer further support to the view that Na,K-ATPase may be a relevant biomolecular target for cytotoxic gold(III) compounds of medicinal interest.

Funder

European Cooperation in Science and Technology

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3