Antidiabetics: Structural Diversity of Molecules with a Common Aim

Author:

Popovic-Djordjevic Jelena B.1,Jevtic Ivana I.2,Stanojkovic Tatjana P.3

Affiliation:

1. Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia

2. Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia

3. Institute of Oncology and Radiology of Serbia, Belgrade, Serbia

Abstract

Background: Diabetes mellitus type 2 (DMT2) is an endocrine disease of global proportions which is currently affecting 1 in 12 adults in the world, with still increasing prevalence. World Health Organization (WHO) declared this worldwide health problem, as an epidemic disease, to be the only non-infectious disease with such categorization. People with DMT2 are at increased risk of various complications and have shorter life expectancy. The main classes of oral antidiabetic drugs accessible today for DMT2 vary in their chemical composition, modes of action, safety profiles and tolerability. Methods: A systematic search of peer-reviewed scientific literature and public databases has been conducted. We included the most recent relevant research papers and data in respect to the focus of the present review. The quality of retrieved papers was assessed using standard tools. Results: The review highlights the chemical structural diversity of the molecules that have the common target-DMT2. So-called traditional antidiabetics as well as the newest and the least explored drugs include polypeptides and amino acid derivatives (insulin, glucagon-like peptide 1, dipeptidyl peptidase-IV inhibitors, amylin), sulfonylurea derivatives, benzylthiazolidine- 2,4-diones (peroxisome proliferator activated receptor-γ agonists/glitazones), condensed guanido core (metformin) and sugar-like molecules (α-glucosidase and sodium/ glucose co-transporter 2 inhibitors). Conclusion: As diabetes becomes a more common disease, interest in new pharmacological targets is on the rise.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3