Inhibition of USP2 Induces Apoptosis through Down Regulation of Fatty Acid Synthase and Cyclin D1 in Triple Negative Breast Cancer

Author:

Syed Nida1,Ilyas Amber1,Idrees Farha2,Zarina 1ORCID,Hashim Zehra1ORCID

Affiliation:

1. National Center for Proteomics, University of Karachi, Karachi-75270, Pakistan

2. DUHS & Ruth Pfau Civil Hospital Karachi, Pakistan

Abstract

Background: Breast cancer is the most occurring cancer in women with high incidence rates both in developed and developing countries. Among different types of breast cancers, Triple Negative Breast Cancer (TNBC) is the most aggressive type as it lacks receptors of Estrogen, Progesterone and Human Epidermal Growth Factor Receptor 2, common diagnostic biomarkers for the disease. Since early detection of TNBC can save thousands of lives, there is a dire need to discover and develop effective and affordable methods for early detection. Different Post Translational Modifications (PTMs) have been proposed as potential biomarker for various clinical conditions. Ubiquitination is a type of PTM involved in the stability and regulation of cellular proteins. Objective: It is hypothesized that reticence of ubiquitination may lead to cell death. Current study focuses on the inhibition of Ubiquitin Specific Protease (USP), USP2 using its inhibitor, ML364 in HTB- 132 triple negative breast cancer cell line to induce cell death. The aim of the current study was to evaluate anticancer property of ML364 that might be a promising novel therapeutic agent for TNBC. Furthermore, current investigations focus on USP2 and their focal stabilizing substrates i.e. Fatty acid Synthase (FAS) and Cyclin D1 could be potential prognostic markers for the disease. Methods: Quantitative PCR of CyclinD1, USP2, MDM2, and Fatty Acid Synthase (FAS) was performed to identify the deubiquitination effect of ML364 in breast cancer cells, which complemented our results with studies on normal and breast cancerous tissue samples. Results: Expression of USP2 and its substrates Cyclin D1and FAS was found to be down regulated in ML364 treated breast cancer cell line whereas higher expression was observed in breast cancer tissue, indicating therapeutic potential of USP2 inhibitor. Conclusion: Our findings suggest that USP2, Cyclin D1 and FAS could be used as prognostic marker and therapeutic target for TNBC.

Funder

Higher Education Commision, Pakistan

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3