Affiliation:
1. Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
2. Drug Discovery Research Centre (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, India
Abstract
Background:
Bioethanol derived from lignocellulosic biomass can supplement the ethanol
supplies in a sustainable manner. However, the bioethanol production process is still not cost effective
and researchers are looking for novel strategies like simultaneous saccharification fermentation to cut
down the production cost. Thermotolerant yeast Saccharomyces cerevisiae JRC6 is reported to improve
the fermentation efficiency under SSF. However, the mechanism of thermotolerance of the
strain is unknown which is important for developing more robust yeast strains for simultaneous saccharification
and fermentation.
Objective:
To identify proteomic changes responsible for imparting thermotolerance by iTRAQ based
profiling of Saccharomyces cerevisiae JRC6 by growing at optimum (30°C) and high temperature (40°C).
Methods: iTRAQ labeling followed by electrospray ionization based tandem mass spectrometry using
SCIEX 5600 Triple-TOF Mass Spectrometer (MS).
Methods:
iTRAQ labeling followed by electrospray ionization based tandem mass spectrometry using
SCIEX 5600 Triple-TOF Mass Spectrometer (MS).
Results:
A total of 582 proteins involved in heat shock, metabolism, biosynthesis, transport of biomolecules,
cell division, etc. were identified. Cells grown at 40°C showed many-fold increase in the
expression for many proteins involved in different functions specially biosynthesis, heat stress and metabolism.
At 40°C heat shock proteins (78), prefoldin subunit (6), DNA binding protein SNT1, J type
co-chaperone JAC1, elongation factor 1-β, glutathione synthase, malate synthase (2), purine biosynthesis
protein ADE17, SSD1 protein, alcohol dehydrogenase 1, 3, 60S ribosomal protein L35-B, mitochondrial
import protein MAS5 and many other proteins were significantly upregulated.
Conclusion:
The iTRAQ analysis revealed many heat shock proteins and heat stable alcohol dehydrogenases
which can be exploited to develop a more robust yeast strain suitable for simultaneous saccharification
and fermentation or consolidated bioprocessing.
Publisher
Bentham Science Publishers Ltd.
Subject
Molecular Biology,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献