Dose Formulation, Biodistribution and PET Imaging Studies of a First-in-Class Fluorine-18 Organophosphorus Cholinesterase Inhibitor Tracer in Rat

Author:

Neumann Kiel D.1,Blecha Joseph E.1,Chao Chih-Kai2,Huynh Tony1,Zinn Kurt R.3,VanBrocklin Henry F.1,Thompson Charles M.2,Gerdes John M.2

Affiliation:

1. Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, 94143, United States

2. Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, 59812, United States

3. Departments of Radiology and Biomedical Engineering, Michigan State University, East Lansing, Michigan, 48824, United States

Abstract

Background:: To investigate dynamic live tissue organophosphorus nerve agent uptake and distribution fates resulting in acetylcholinesterase inhibition, we recently reported the first-in-class fluorine-18 [18F] radiolabeled Positron Emission Tomography (PET) imaging tracer known as [18F]O-(2-fluoroethyl)-O-(p-nitrophenyl)methylphosphonate. This tracer has been initially studied in live rats with PET imaging. Objective.: We sought to evaluate the PET tracer in vivo using a new dose formulation of saline, ethanol and L-ascorbic acid, and compare the influence of this formulation on in vivo tracer performance to previous data collected using a CH3CN:PBS formulation. Methods:: A high molar activity [18F]tracer radiosynthesis was used. Doses were formulated as saline, ethanol (≤ 1%) and L-ascorbic acid (0.1%), pH 4.0-4.5. Stability was evaluated to 6 h. Dose injection (i.v.) into male rats was followed by either ex vivo biodistribution profiling at 5, 30, 90 min, or dynamic 90 min PET imaging. Rat biodistribution and PET imaging data were compared. Results and Discussion:: An optimized radiosynthesis (8 ± 2 % RCY) resulted in stable doses for 6 h (>99%). Arterial blood included a tracer and a single metabolite. The ex vivo biodistribution and live tissue PET imaging data revealed rapid radioactivity uptake and distributed tissue levels: heart and lung, highest; liver, moderate; and brain, lowest. Conclusions:: Imaging and biodistribution data were highly correlated with expected radioactivity tissue uptake and distribution in target organs. Lower brain radioactivity levels by PET imaging were found for the new formulation (saline, 1% L-ascorbic acid, < 1% ethanol) as compared to the established CH3CN:PBS formulation. Overall, we found that the i.v. dose formulation changed the in vivo profile of an organophosphorus PET tracer that is considered an important finding for future organophosphorus PET tracer studies.

Funder

National Institute of Neurological Disorders and Stroke (NINDS) of the National Institutes of Health

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3