Potential Inhibitors Identification of Severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Angiotensin-Converting Enzyme 2 and Main Protease from Anatolian Traditional Plants

Author:

Kılınç Namık1ORCID,Açar Mikail2ORCID,Tuncay Salih3ORCID,Karasakal Ömer Faruk4ORCID

Affiliation:

1. Department of Medical Services and Techniques, Vocational School of Health Service, Igdir University, Igdir, Turkey

2. Department of Plant and Animal Production, Tunceli Vocational School, Munzur University, Tunceli, Turkey

3. Department of Food Technology, Vocational School of Health Service, Uskudar University, Istanbul, Turkey

4. Department of Medical Laboratory Techniques, Vocational School of Health Service, Uskudar University, Istanbul, Turkey

Abstract

Background: The 2019 novel coronavirus disease (COVID-19) has caused a global health catastrophe by affecting the whole human population around the globe. Unfortunately, there is no specific medication or treatment for COVID-19 currently available. Objective: It’s extremely necessary to apply effective drug treatment in order to end the pandemic period and return daily life to normal. In terms of the urgency of treatment, rather than focusing on the discovery of novel compounds, it is critical to explore the effects of existing herbal agents with proven antiviral properties on the virus. Method: Molecular docking studies were carried out with three different methods, Glide extra precision (XP) docking, Induced Fit docking (IFD), and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA), to determine the potential effects of 58 phytochemicals in the content of Rosmarinus officinalis, Thymbra spicata, Satureja thymbra, and Stachys lavandulifolia plants -have antiviral and antibacterial effects- against Main Protease (Mpro) and Angiotensin Converting Enzyme 2 (ACE2) enzymes. Results: 7 compounds stand out among all molecules by showing very high binding affinities. According to our findings, the substances chlorogenic acid, rosmarinic acid, and rosmanol exhibit extremely significant binding affinities for both Mpro and ACE2 enzymes. Furthermore, it was discovered that carnosic acid and alpha-cadinol showed potential anti-Mpro activity, whereas caffeic acid and carvacrol had promising anti-ACE2 activity. Conclusion: Chlorogenic acid, rosmarinic acid, rosmanol, carnosic acid, alpha-cadinol, caffeic acid, and carvacrol compounds have been shown to be powerful anti-SARS-COV-2 agents in docking simulations against Mpro and ACE2 enzymes, as well as ADME investigations.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3