Resorcinol Derivatives as Novel Aldose Reductase Inhibitors: In Silico and In Vitro Evaluation

Author:

Kılınç Namık1ORCID

Affiliation:

1. Department of Medical Services and Techniques, Vocational School of Health Service, Igdir University, Igdir, Turkey

Abstract

Background: The polyol pathway, an alternative way of carbohydrate metabolism, is activated by hyperglycemia. Aldose reductase (AR), the first and rate-limiting enzyme of the polyol pathway, is responsible for the reduction of glucose to sorbitol. Inhibiting the aldose reductase enzyme and reducing the polyol pathway is considered an effective method to prevent and postpone the onset of diabetic complications. Objective: Therefore, in this work, we investigate the inhibition effects of certain resorcinol derivatives and the positive control compound quercetin on the AR enzyme in vitro and in silico. These phenolic compounds, whose inhibitory effects on the AR enzyme were investigated, were also compared with known drugs in terms of their drug-like characteristics. Methods: Three methods were used to determine the inhibitory effects of resorcinol derivatives on recombinant human AR enzyme. After the in vitro inhibition effects were determined spectrophotometrically, the binding energy and binding modes were determined by molecular docking method. Finally, the MM-GBSA method was used to determine the free binding energies of the inhibitors for the AR enzyme. Results: 5-pentylresorcinol compound showed the strongest inhibition effect on recombinant human AR enzyme with an IC50 value of 9.90 μM. The IC50 values of resorcinol, 5-methylresorcinol, 4- ethylresorcinol, 4-hexylresorcinol, 2-methylresorcinol, and 2,5-dimethylresorcinol compounds were determined as 49.50 μM, 43.31 μM, 19.25 μM, 17.32 μM, 28.87 μM, 57.75 μM, respectively. Conclusion: The results of this research showed that resorcinol compounds are effective AR inhibitors. These findings are supported by molecular docking, molecular mechanics, and ADME investigations undertaken to corroborate the experimental in vitro results.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3