Recent Progress in Solar Cell Technology for Low-Light Indoor Applications

Author:

Kim Soyeon1,Jahandar Muhammad1,Jeong Jae Hoon1,Lim Dong Chan1

Affiliation:

1. Surface Technology Division, Materials Center for Energy Convergence, Korea Institute of Materials Science (KIMS), Changwon 51508, Korea

Abstract

Photovoltaic cells have recently attracted considerable attention for indoor energy harvesting for low-power-consumption electronic products due to the rapid growth of the Internet of Things (IoT). The IoT platform is being developed with a vision of connecting a variety of wireless electronic devices, such as sensors, household products, and personal data storage devices, which will be able to sense and communicate with their internal states or the external environment. A self-sustainable power source is required to power such devices under low light indoor environments. Inorganic photovoltaic cells show excellent device performance under 1 Sun illumination and dominate the market for outdoor applications. However, their performance is limited for indoor applications with low incident light intensities as they exhibit low photo-voltage. Among the emerging photovoltaic technologies, organic photovoltaics have unique advantages, including solution processibility, flexibility, and lightweight tailorable design; hence, they are considered the best solution for indoor light harvesting applications due to their high photo-voltage, strong absorption of UV-visible wavelengths, and a spectral response similar to that emitted by modern indoor lighting systems. In this review article, we discuss the factors affecting device performance of different photovoltaic technologies under low incident light intensities or indoor conditions and provide a comprehensive analysis of future opportunities for enhancing indoor performance of the photovoltaic devices. Furthermore, we discuss some of the results of semi-transparent organic solar cell which is operated under complex environmental conditions like low illumination, incident light angle etc. Based on the results, one can suggest that semi-transparent organic solar cell is more suitable for progressive indoor solar cell. After highlighting the factors that limit indoor device performance of photovoltaic cells, we discuss potential applications of IoT devices powered by organic photovoltaic cells in indoor lighting environments.

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3