In silico Prediction and Evaluation of Human Parainfluenza Virus-3 CD4+ T Cell Epitopes

Author:

Mohammadi Mozafar1,Bemani Peyman1

Affiliation:

1. Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

Abstract

Background: Human parainfluenza viruses type 3 (HPIV-3) through bronchiolitis and pneumonia is a common cause of lower respiratory tract infections. It is the main cause of hospitalization of infants and young children and also one of the main causes of morbidity and mortality in immuno-compromised and transplant patients. Despite many efforts, there is currently no specific anti-HPIV-3 drug or approved vaccine to prevent and control the virus. Identification of HPIV-3 epitopes with the capability of binding to human leukocyte antigen (HLA) class II molecules can be helpful in designing new vaccine candidates against HPIV-3 infection, and also can be useful for the in vitro stimulation and proliferation of HPIV-3-specific T cells for transplant and immunocompromised patients. Objective: To predict and comprehensively evaluate CD4+T cell epitope (HLA-II binders) from four main HPIV-3 antigens. Method: In the present work, we predicted and comprehensively evaluated CD4+T cell epitope (HLA-II binders) from four main HPIV-3 antigens, including fusion protein (F), hemagglutininneuraminidase (HN), nucleocapsid (N) and matrix (M) proteins using bio- and immunoinformatics software. The toxicity, allergenicity, Blast screening and population coverage of the predicted epitopes were evaluated. The binding ability of the final selected epitopes was evaluated via a docking study. Results: After several filtering steps, including blast screening, toxicity and allergenicity assay, population coverage and docking study, 9 epitopes were selected as candidate epitopes. The selected epitopes showed high population coverage and docking studies revealed a significantly higher binding affinity for the final epitopes in comparison with the negative control peptides. Conclusion: The final selected epitopes could be useful in designing vaccine candidates and for the treatment of immune-compromised individuals and patients with transplantation.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3