Artificial Intelligence, Big Data and Machine Learning Approaches in Precision Medicine & Drug Discovery

Author:

Nayarisseri Anuraj1,Khandelwal Ravina1,Tanwar Poonam1,Madhavi Maddala2,Sharma Diksha1,Thakur Garima1,Speck-Planche Alejandro3,Singh Sanjeev Kumar4

Affiliation:

1. In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India

2. Department of Zoology, Nizam College, Osmania University, Hyderabad - 500001, Telangana State, India

3. Programa Institucional de Fomento a la Investigacion, Desarrollo e Innovacion, Universidad Tecnologica Metropolitana, Ignacio Valdivieso 2409, P.O. 8940577, San Joaquin, Santiago, Chile

4. Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630003, Tamil Nadu, India

Abstract

Artificial Intelligence revolutionizes the drug development process that can quickly identify potential biologically active compounds from millions of candidate within a short period. The present review is an overview based on some applications of Machine Learning based tools, such as GOLD, Deep PVP, LIB SVM, etc. and the algorithms involved such as support vector machine (SVM), random forest (RF), decision tree and Artificial Neural Network (ANN), etc. at various stages of drug designing and development. These techniques can be employed in SNP discoveries, drug repurposing, ligand-based drug design (LBDD), Ligand-based Virtual Screening (LBVS) and Structure- based Virtual Screening (SBVS), Lead identification, quantitative structure-activity relationship (QSAR) modeling, and ADMET analysis. It is demonstrated that SVM exhibited better performance in indicating that the classification model will have great applications on human intestinal absorption (HIA) predictions. Successful cases have been reported which demonstrate the efficiency of SVM and RF models in identifying JFD00950 as a novel compound targeting against a colon cancer cell line, DLD-1, by inhibition of FEN1 cytotoxic and cleavage activity. Furthermore, a QSAR model was also used to predict flavonoid inhibitory effects on AR activity as a potent treatment for diabetes mellitus (DM), using ANN. Hence, in the era of big data, ML approaches have been evolved as a powerful and efficient way to deal with the huge amounts of generated data from modern drug discovery to model small-molecule drugs, gene biomarkers and identifying the novel drug targets for various diseases.

Funder

DST-PURSE

Department of Biotechnology (DBT), New Delhi

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Drug Discovery,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3