The Potential of PI3K/AKT/mTOR Signaling as a Druggable Target for Endometrial and Ovarian Carcinomas

Author:

Lengyel Csongor György1ORCID,Altuna Sara Cecilia2ORCID,Habeeb Baker Shalal3ORCID,Trapani Dario4ORCID,Khan Shah Zeb5ORCID

Affiliation:

1. Head and Neck Surgery, National Institute of Oncology Hungary, Budapest, Hungary

2. Oncomedica C.A, Caracas, Venezuela

3. Medical Oncology Department, Shaqlawa Teaching Hospital, Erbil, Iraq

4. Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy and Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology IRCCS, Milan, Italy

5. Department of Clinical Oncology, Bannu Institute Nuclear Medicine Oncology and Radiotherapy, Bannu, Pakistan

Abstract

Aims: In this narrative review, we summarize the role and significance of PI3K-AKTmTOR (PAM) pathway in ovarian and endometrial cancers, providing the most recent and relevant literature on the topic and addressing options for targeting PAM along with future perspectives of drug development. Background: Alterations of the PAM-pathway are common in both endometrial and ovarian cancers, and are described in specific histology-defined subtypes. PAM seems to be involved in critical steps of endometrial and ovarian carcinogenesis, often mechanistically involved in the acquisition of a phenotype of treatment resistance, which could be targetable. However, early clinical trials with PAMinhibitors (PAMi) have provided disappointing results, particularly when non isoform-specific inhibitors were tested in unselected populations, accompanied by an adverse safety profile. Since then, more encouraging observations have been collected when targeting specific isoforms of PAM proteins with more selective drugs, resulting in encouraging activity and more manageable toxicity. Conclusion: Although the rationale of inhibiting the PAM-pathway has been demonstrated in several promising preclinical studies, no Phase III clinical trial is available to demonstrate a significant benefit of PAM-inhibitors. A way to manage targeted agents is to tailor their use to particular subpopulations most likely to obtain a considerable benefit, namely pursuing an individualized, precision-medicine approach.

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Drug Discovery,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3