Advancements in GaN Technologies: Power, RF, Digital and Quantum Applications

Author:

Mohanbabu A.1,Maheswari S.2,Vinodhkumar N.3,Murugapandiyan P.4,Kumar R. Saravana5

Affiliation:

1. SRM Institute of Science and Technology, Ramapuram, Chennai, India

2. Panimalar Engineering College, Chennai, India

3. Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India

4. Anil Neerukonda Institute of Technology & Sciences, Visakhapatnam, Andhra Pradesh, India

5. School of Electronics Engineering, VIT University, Chennai, India

Abstract

Quantum well devices based on III-V heterostructures outperform Field Effect Transistors (FETs) by harnessing the exceptional properties of the twodimensional electron gas (2DEG) in various material interface systems. In high-power electronics, III-V-based Gallium Nitride (GaN) HEMTs can have a great influence on the transport industry, consumer, RADAR, sensing systems, RF/ power electronics, and military systems. On the other hand, the devices made of HEMTs and MIS-HEMTs work in enhancement mode, having very low leakage current, which can conserve energy for more efficient power conversion, microwave/ power transistors and highspeed performance for wireless communication. The existing physics of the wellestablished AlGaN heterostructure system imposes constraints on the further progress of GaN-based HEMTs. Some of the scopes include: Initially, the semiconductor materials made of SiC, GaN, and AlGaN allow a device that is resistant to severe conditions, such as high-power /voltage-high temperature, to operate due to its effective dielectric constant and has a very good thermal conductivity, which makes this device well-suited for military applications. Secondly, with the urgent need for high-speed internet multimedia communication across the world, high transmission network capacity is required. GaN-based HEMT devices are suitable candidates for achieving high-speed limits, high gain and low noise performance. In conclusion, GaN and related interface materials exhibit chemical stability and act as robust semiconductors, exhibiting remarkable piezoelectric polarization effects that lead to a high-quality 2DEG. Integrating free-standing resonators with functionalized GaNbased 2DEG formation reveals the potential for designing advanced sensors.<br>

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3