Gas Phase Ionization of Toluene: Benzylium Versus Tropylium Pathway

Author:

Nguyen Thao1,Aparicio Mario1,Saleh Mahmoud A.1

Affiliation:

1. Department of Chemistry, College of Science, Engineering and Technology, Texas Southern University, Houston, TX 77004, United States

Abstract

Aim: In this investigation, we used accurate mass high-resolution gas chromatography mass spectrometry to study the gas phase carbocations rearrangements and fragmentation of toluene and halo-toluenes as well as their deuterium labeled compounds. Objective: Accurate mass of selected ions from ionization of toluene and related compounds revealed that the initially formed radical cation C7H8 +. does not rearrange to tropylium radical cation contradicting published literature. Methods: When the toluene radical cation was purely selected, it was found to lose a free radical (hydrogen atom) at collision energies greater than 5 eV and forming benzylium or tropylium cation C7H7 + (m/z = 91), with no other fragmentations. Results: The resulting cation at collision energy greater than 20 eV fragmented by losing acetylene or ethylene or allene molecule to form C5H5 + (m/z = 65), C5H3 + (m/z = 63) or C4H3 + (m/z = 51) respectively. Purely selected C5H5 + cation at collision energy greater than 30 eV lost acetylene molecule and formed C3H3 + (m/z =39). Conclusion: In this investigation toluene, halotoluene and their deuterated derivatives (structural isomers) were found to ionize in the gas phase with isomer retention. Historically, it has been suggested that the seven carbons and hydrogen atoms would become indistinguishable. However, this should be revised in the light of new technologies.

Funder

National Institute on Minority Health and Health Disparities

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3