Meclofenoxate Inhibits Aggregation of Alpha-synuclein in vitro

Author:

Parui Adhuna1,Biswas Soumojit1,Roy Ipsita1ORCID

Affiliation:

1. Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160062, India

Abstract

Background: α-Synuclein, a natively disordered protein, is a key component of Lewy bodies, the ubiquitinated protein aggregates which are the pathological hallmark of Parkinson’s disease (PD). Meclofenoxate (centrophenoxine) is a nootropic drug which has shown beneficial therapeutic effects in various neuronal diseases. Administration of meclofenoxate enhanced levels of dopamine and improved motor function in animal models of Parkinson’s disease (PD). Evidence suggested that dopamine interacts with and modulates α-synuclein aggregation. Objective: The aim of this work was to investigate whether the observed positive effect of addition of meclofenoxate, a nootropic agent, on dopamine level, could be correlated with its effect on aggregation of α-synuclein. Methods: Purification of recombinant human α-synuclein was performed by anion exchange chromatography. The purified protein was incubated in the absence and presence of meclofenoxate and was analyzed for aggregation by Thioflavin T fluorescence spectroscopy. Conformational changes in α-synuclein were monitored by fluorescence spectroscopy and fluorescence quenching studies using a neutral quencher. Secondary structure analysis of α-synuclein was monitored by circular dichroism spectroscopy. Results: Recombinant human α-synuclein was expressed and purified by anion-exchange chromatography. Incubation of α-synuclein with meclofenoxate led to lowering aggregation in a concentration-dependent manner. Reduction in formation of oligomers was seen which suggested the formation of an off-pathway species which did not give rise to an aggregation-competent entity. Fluorescence quenching studies revealed that the additive distorted the native conformation of α- synuclein, leading to the formation of lower amounts of aggregation-prone species. Conclusion: In the presence of higher concentrations of meclofenoxate, α-synuclein undergoes a change in its conformation. This change is not dependent on the concentration of the additive. This non-native conformer promotes the formation of a species which does not undergo further aggregation. Our study provides a mechanistic explanation of the earlier observation that meclofenoxate has a beneficial effect on progression of PD in animal models.

Funder

Science and Engineering Research Board

Indian Council of Medical Research

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3