Recent Advances on the Semi-Supervised Learning for Long Non-Coding RNA-Protein Interactions Prediction: A Review

Author:

Zhong Lin1,Ming Zhong2,Xie Guobo3,Fan Chunlong4,Piao Xue5

Affiliation:

1. School of Mathematics, Liaoning University, Shenyang, 110036, China

2. National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, 518060, China

3. School of Computer Science, Guangdong University of Technology, Guangzhou, 510006, China

4. College of Computer Science, Shenyang Aerospace University, Shenyang, 110136, China

5. School of Medical Informatics, Xuzhou Medical University, Xuzhou, 221004, China

Abstract

: In recent years, more and more evidence indicates that long non-coding RNA (lncRNA) plays a significant role in the development of complex biological processes, especially in RNA progressing, chromatin modification, and cell differentiation, as well as many other processes. Surprisingly, lncRNA has an inseparable relationship with human diseases such as cancer. Therefore, only by knowing more about the function of lncRNA can we better solve the problems of human diseases. However, lncRNAs need to bind to proteins to perform their biomedical functions. So we can reveal the lncRNA function by studying the relationship between lncRNA and protein. But due to the limitations of traditional experiments, researchers often use computational prediction models to predict lncRNA protein interactions. In this review, we summarize several computational models of the lncRNA protein interactions prediction base on semi-supervised learning during the past two years, and introduce their advantages and shortcomings briefly. Finally, the future research directions of lncRNA protein interaction prediction are pointed out.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Science and Technology Plan Project of Guangdong Province

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3