Expression, Purification and Characterization of Recombinant Human Coagulation Factor XIIIa in Pichia Pastoris

Author:

Cheng Linyan1ORCID,Zhang Ting1ORCID,Fei Yuchang2ORCID,Shen Hao1ORCID,Huang Hui1ORCID,Chen Jin1ORCID,Xu Bin3ORCID,Xu Jian1ORCID

Affiliation:

1. Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China

2. The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China

3. Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China

Abstract

Background: Coagulation factor XIIIa(FXIIIa) plays a critical role in the final stage of blood coagulation. It is extremely important in wound healing, tissue repairing and promoting cell adhesion. The deficiency of the coagulation factor can cause hemorrhage and slow wound healing. Objective: In this study, recombinant pPICZαC-FXIIIa was expressed in Pichia pastoris, purified as well as its biological activity was determined. Methods: The FXIIIa fragment obtained from the human placenta was inserted into pPICZαC to obtain pPICZαC-FXIIIa, which was transformed into X33 after linearization, and FXIIIa inserted into Pichia pastoris X33 was screened for methanol induction. The expressed product was identified by western blotting, then the supernatant was purified by affinity chromatography, and the purified product was determined by plasma coagulation experiment. Results: Polymerase Chain Reaction(PCR) showed that the FXIIIa fragment of 2250 bp was inserted successfully into pPICZαC. The expression and purification products of the same molecular weight as target protein(about 83 kDa) were obtained, which solidified significantly when reacted with plasma. Conclusion: The expression and purification products were successful, with sufficient biological activity, which can be used as a candidate FXIIIa hemostatic agent in genetic engineering.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3