Ring-Opening Polymerization of L-lactide Initiated by Samarium(III) Acetate

Author:

Ramírez Jesús Miguel Contreras1,Medina Dimas1,López-Carrasquero Francisco1,Contreras Ricardo Rafael2

Affiliation:

1. Grupo de Polimeros, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101-A, Venezuela

2. Laboratorio de Organometalicos, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101-A, Venezuela

Abstract

Background: The synthesis of the aliphatic polyesters obtained by the ring opening polymerization has been achieved using as initiators a large amount of organometallic compounds derivative from: Alkali metals, alkaline earth metals, transition metals and lanthanide metals. Of all these compounds, the lanthanide derivatives have acquired great importance in the synthesis of aliphatic polyesters, since these show a greater catalytic activity and also can provide polymer with characteristics that will be very useful in the design of biomaterials. Objective: It was proposed the synthesis of poly(L-lactida) (PL-LA) through a ring opening polymerization process of L-lactide initiated with samarium(III) acetate (Sm(OAc)3) under solvent-free melt conditions. The influence of different parameters of reaction, such as temperature, time, molar ratio monomer to initiator, on typical variables of polymers, e.g., conversion, dispersity, and molar mass, were analyzed. Methods: All polymerizations were carried out under solvent-free melt conditions in ampoules-like flasks, equipped with a magnetic stirrer. The obtained polyesters were characterized by size exclusion chromatography (SEC) and 1H-NMR. Results: The Sm(OAc)3 induces the polymerization of L-LA at high conversion, and produce polyesters with number-average molecular weights of 1.00 x 103 to 30.00 x 103 Dalton. The 1H-NMR analysis indicates a typical polymerization mechanism of coordination-insertion, with a breakdown of the acyl-oxygen bond of the L-LA. Conclusion: Sm(OAc)3 was an effective initiator for the ring-opening polymerization of L-LA. SEC chromatography showed that, at high temperatures and prolonged reaction times, the molar mass of the polyester decreases, which is associated with the transesterification collateral reactions that occur during the polymerization process.

Funder

Consejo de Desarrollo Científico, Tecnológico, Humanístico y de las Artes de la Universidad de Los Andes

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3