Exploring the Targets and Molecular Mechanisms of Thalidomide in the Treatment of Ulcerative Colitis: Network Pharmacology and Experimental Validation

Author:

Li Jun1,Tao Qin1,Xie Yang1,Wang Peng1,Jin Ruiri1,Huang Xia1,Chen Youxiang1,Zeng Chunyan1

Affiliation:

1. Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China

Abstract

Background: Ulcerative colitis (UC) is a chronic, nonspecific, inflammatory disease of the intestine with an unknown cause. Thalidomide (THA) has been shown to be an effective drug for the treatment of UC. However, the molecular targets and mechanism of action of THA for the treatment of UC are not yet clear. Objectives: Combining network pharmacology with in vitro experiments, this study aimed to investigate the potential targets and molecular mechanisms of THA for the treatment of UC. Methods: Firstly, relevant targets of THA against UC were obtained from public databases. Then, the top 10 hub targets and key molecular mechanisms of THA for UC were screened based on the network pharmacology approach and bioinformatics method. Finally, an in vitro cellular inflammation model was constructed using lipopolysaccharide (LPS) induced intestinal epithelial cells (NCM460) to validate the top 10 hub targets and key signaling pathways. Results: A total of 121 relevant targets of THA against UC were obtained, of which the top 10 hub targets were SRC, LCK, MAPK1, HSP90AA1, EGFR, HRAS, JAK2, RAC1, STAT1, and MAP2K1. The PI3K-Akt pathway was significantly associated with THA treatment of UC. In vitro experiments revealed that THA treatment reversed the expression of HSP90AA1, EGFR, STAT1, and JAK2 differential genes. THA was able to up- regulate the mRNA expression of pro-inflammatory factor IL-10 and decrease the mRNA levels of anti-inflammatory factors IL-6, IL-1β, and TNF-α. Furthermore, THA also exerted anti-inflammatory effects by inhibiting the activation of the PI3K/Akt pathway. Conclusion: THA may play a therapeutic role in UC by inhibiting the PI3K-Akt pathway. HSP90AA1, EGFR, STAT1, and JAK2 may be the most relevant potential therapeutic targets for THA in the treatment of UC.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Jiangxi Province Postgraduate Innovation Special Fund

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3