Affiliation:
1. Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University,
Tehran, Iran
Abstract
Abstract:
The development of density functional theory has led to the consideration of computational
chemistry in the design and development of interactions of new drugs in the gas phase with nanocarriers.
In the present study, the interaction of ibuprofen with alginic acid (as a nanocarrier) has been
investigated using density functional theory (DFT) in the gas phase (M06-2X/6-31+G*). A study on
the effects of ibuprofen’s interaction with the compounds present in alginic acid has been conducted,
focusing on the electronic properties, the chemical shift tensors, and the natural bond orbital. Based on
the results of UV spectra, the compound 6-thioguanine has been found to be changed into an alginic
acid/ibuprofen complex. The quantum theory of atoms in molecules showed the interaction of ibuprofen
to be mainly driven by non-covalent bonds with alginic acid during complex formation. A
hydrogen bond has been found to be formed between the oxygen atoms of alginic acid and ibuprofen's
hydrogen atoms. Consequently, alginic acid has been used for delivering ibuprofen to diseased cells.
Publisher
Bentham Science Publishers Ltd.