Total Synthesis of Xestodecalactone C via Sharpless Epoxidation and Friedal-Crafts Acylation

Author:

Sudhakar Chithaluri1ORCID,Prasad Kottolla Sai1,Ramesh Batharaju1

Affiliation:

1. Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, Telangana, 502 102, India

Abstract

Abstract: Marine-derived macrolides that occur naturally exhibit a range of biological properties, including antibacterial and antifungal activity. : Sharpless epoxidation and intramolecular acylation via the Friedel-Crafts method for the macrolide ring formation was used as the main steps in the regioselective construction of naturally existing xestodecalactone C, which was started from chiral propylene oxide. : The isolated yellow coloured final product had a 91% yield, and FT-IR, Mass, 1H-NMR, and 13C NMR were used to characterise each product. As a result, chiral propylene oxide was used as the starting material for the regioselective total synthesis of the naturally occurring xestrodecalactone C, with the main stages being intramolecular Friedel-Crafts acylation for macrolide ring formation and Sharpless epoxidation. The synthesis of numerous xestrodecalactone C analogues relevant for bioevaluation can be done quickly and easily using this synthetic approach.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3