A Smart Hydrogel from Salvia spinosa Seeds: pH Responsiveness, On-off Switching, Sustained Drug Release, and Transit Detection

Author:

Hussain Muhammad Ajaz1,Bukhari Syed Nasir Abbas2,Ali Arshad1,Haseeb Muhammad Tahir3,Muhammad Gulzar4,Sheikh Fatima Akbar3,Farid-ul-Haq Muhammad1,Ahmad Naveed5

Affiliation:

1. Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan

2. Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf, Sakaka 72388, Saudi Arabia

3. College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan

4. Department of Chemistry, Government College University, Lahore 54000, Pakistan

5. Department of Pharmaceutics, College of Pharmacy, Jouf University, Aljouf, Sakaka 72388, Saudi Arabia

Abstract

Background: The use of synthetic and semi-synthetic materials in drug delivery systems has associated drawbacks like costly synthesis, toxicity, and biocompatibility issues. Therefore, there is a need to introduce novel materials to overcome such issues. Naturally occurring and water-swellable polysaccharides are advantageous in overcoming the above-mentioned issues. Therefore, we are reporting a novel hydrogel (SSH) isolated from the seeds of Salvia spinosa as a sustained release material. Methods: SSH was explored for its pH-dependent and salt-responsive swelling before and after compression in a tablet form. Stimuli-responsive swelling and deswelling were also monitored at pH 7.4 and pH 1.2 in deionized water (DW) and normal saline and DW and ethanol. The sustained-release potential of SSH-based tablets was monitored at gastrointestinal tract (GIT) pH. The transit of SSH tablets was ascertained through an X-ray study. Results: The swelling of SSH in powder and tablet form was found in the order of DW > pH 7.4 > pH 6.8 > pH 1.2. An inverse relation was found between the swelling of SSH and the concentration of the salt solution. The SSH showed stimuli-responsive swelling and de-swelling before and after compression, indicating the unaltered nature of SSH even in a closely packed form, i.e., tablets. Sustained release of theophylline (< 80%) was witnessed at pH 6.8 and 7.4 during the 12 h study following zeroorder kinetics, and radiographic images also showed 9 h retention in GIT. Conclusion: These investigations showed the potential of SSH as a pH-sensitive material for sustained and targeted drug delivery.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3