Preparation, Characterization, and in vitro/vivo Evaluation of Long-Acting Rivaroxaban-Loaded Microspheres

Author:

Xiong Subin1,Tan Chunli1

Affiliation:

1. College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310032, China

Abstract

Background: Rivaroxaban is widely used for long-term prevention and maintenance therapy of thromboembolic disorders. The existing oral dosage forms of rivaroxaban lead to poor patient adherence because of repeated daily administration. The aim of this study is to design long-acting rivaroxaban- loaded microspheres to reduce dosing frequency and improve patient compliance. Methods: Rivaroxaban-loaded microspheres were prepared using the emulsion-solvent evaporation method. The microspheres were evaluated in terms of morphology, particle size, drug loading and encapsulation efficiency, the physical state of the drug in the matrix, in vitro release/release mechanism, and in vivo pharmacokinetics in Sprague Dawley rats. Results & Discussion: Rivaroxaban-loaded microspheres presented spherical-shaped particles displaying a mean particle size of 89.3 μm, drug loading of 16.5% and encapsulation efficiency of 97.8%. The X-ray diffraction indicated that rivaroxaban existed in crystal form in the microspheres. In vitro release lasting approximately 50 days was characterized as a tri-phasic pattern: (1) an initial burst release, mainly due to the dissolution of drug particles with direct access to the microparticles’ surface, (2) a “plateau” phase with a slow-release rate controlled by the diffusion and (3) a final, rapid drug release phase controlled by polymer erosion. Pharmacokinetic studies showed that rivaroxaban microspheres maintained a sustained release for more than 42 days. Conclusion: Rivaroxaban-loaded microspheres have great potential clinical advantages in reducing dosing frequency and improving patient compliance. The data obtained from this study could be used as scientific evidence for decision-making in future formulation development.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3