A Novel Etanercept-Loaded Nano-emulsion for Targeted Treatment of Inflammatory Arthritis via Draining Lymph Node

Author:

Li Chenglong1ORCID,lu Guanting2,Jiang Yue3,Su Huaiyu1,Li Chen4

Affiliation:

1. People’s Hospital of Deyang City Department of Pharmacy Deyang China

2. People’s Hospital of Deyang City Laboratory of Translational Medicine Research Deyang China

3. People\'s Hospital of Deyang Deyang China

4. University of Electronic Science and Technology of China Chengdu China

Abstract

Background: Rheumatoid arthritis (RA) is a systemic autoimmune disease (AD), and the global incidence rate is 0.5 ~ 1%. Existing medications might reduce symptoms, however, there is no known cure for this illness. Etanercept (EN) can competitively inhibit TNF-α binding to the TNF receptor on the cell surface to treat RA. However, subcutaneous injection of free EN predisposes to systemic distribution and induces immune system hypofunction. Draining lymph nodes (LNs) play a significant role in the onset, maintenance, and progression of RA as they are the primary sites of aberrant immune response and inflammatory cytokine production. Aim: The purpose of this study was to successfully treat RA with etanercept by encapsulating it in nanoemulsions (NEs/EN) and then delivering it specifically to draining LNs. The EN-loaded NEs were prepared by high-pressure homogenization method and modified with DSPE-mPEG2000 and Ca(OH)2. Methods: A novel nano-emulsion (NE) was constructed to deliver EN (NE/EN) to RA-draining LNs. To decrease aggregation and load EN, DSPE-mPEG2000 and Ca(OH)2 were successively decorated on the surface of the lipid injectable emulsions. The hydrodynamic diameter and morphology of NEs/EN were investigated by using a laser particle size analyzer and transmission electron microscopy, respectively. The in vivo fluorescence imaging system was used to study the in vivo LN targeting ability of the formulation. In the therapeutic experiment, NEs/EN was subcutaneously administrated to inhibit the development of the mouse arthritis model. Results: Circular dichroism spectrum and L929 cell experiment confirmed that NEs encapsulation had no impact on the biological activity of EN. In vivo investigation on collagen-induced arthritis (CIA) mouse model showed that NEs/EN have good inguinal lymph node targeting capabilities, as well as, anti-inflammatory effect against RA. Compared with the free group, the paw thickness and arthritic score in NEs/EN group were significantly alleviated. Moreover, the concentration of pro-inflammatory cytokines TNF-α and IL-1β in NEs/EN-treated mice was lower than that in free EN. Conclusion: NEs/EN effectively improve the effectiveness of EN in the treatment of RA. Our work provides an experimental foundation for expanding the clinical application of EN.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3