An Overview on Electrochemical Sensors Based on Nanomaterials for the Determination of Drugs of Abuse

Author:

Amiri Mandana1,Imanzadeh Hamideh2,Sefid-Sefidehkhan Yasaman1

Affiliation:

1. Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran

2. Department of Chemistry, Shahid Madani University, Tabriz, Iran

Abstract

Drug abuse is considered a serious source of economic and social problems. The identification of drugs of abuse is in demand in forensic and clinical toxicology. There are various methods for the determination of these materials, including chromatographic and mass spectrometric techniques. However, most of these techniques need high-cost equipment, they are time-consuming, and they suffer from complicated sample preparation protocols. In contrast, electrochemical methods are low cost, mobile, and they do not require complicated sample preparation protocols. The use of nanomaterials in electroanalysis has gained significant attention in order to improve selectivity, enhance sensitivity, and lower the limit of detections. Nanomaterials have significantly gained research-interest due to their low cost (due to low amounts of materials being used) and their uniquely size-dependent properties. The incorporation of nanomaterials into host matrices is important to prepare nanocomposite sensor films. Unique properties of nanomaterials and hybrid materials, such as mechanical strength, electrical conductivity, optical responsiveness, specific catalytic and magnetic properties, in addition to high surface area per mass ratio are attractive. Besides providing novel properties, nanomaterials allow low-cost electrode fabrication based on simple technologies. The combination of nanotechnology with modern electroanalytical techniques allows innovation in electrical sensing devices with features like increased mass transport, high sensor surface area, and controlled electrode surface micro-environment. The aim of this review is to give an outline of electroanalytical determination based on nanomaterials focusing on illicit drugs in matrices, such as urine, blood, or saliva. We summarize developments in field-based sensors for determining drugs of abuse.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3