Diagnostic and New Therapeutic Approaches to Two Challenging Pediatric Metabolic Bone Disorders: Hypophosphatasia and X-linked Hypophosphatemic Rickets

Author:

Aljuraibah Fahad123ORCID,Alalwan Ibrahim123,Habeb Abdelhadi1

Affiliation:

1. Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

2. College of Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

3. King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs Riyadh, Saudi Arabia

Abstract

Abstract: The diagnosis and management of metabolic bone disease among children can be challenging. This difficulty could be due to many factors, including limited awareness of these rare conditions, the complex pathophysiology of calcium and phosphate homeostasis, the overlapping phenotype with more common disorders (such as rickets), and the lack of specific treatments for these rare disorders. As a result, affected individuals could experience delayed diagnosis or misdiagnosis, leading to improper management. In this review, we describe the challenges facing diagnostic and therapeutic approaches to two metabolic bone disorders (MBD) among children: hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH). We focus on explaining the pathophysiological processes that conceptually underpin novel therapeutic approaches, as well as these conditions’ clinical or radiological similarity to nutritional rickets. Particularly in areas with limited sun exposure and among patients not supplementing vitamin D, nutritional rickets are still more common than HPP and XLH, and pediatricians and primary physicians frequently encounter this disorder in their practices. More recently, our understanding of these disorders has significantly improved, leading to the development of novel therapies. Asfotas alfa, a recombinant, human-tissue, nonspecific alkaline phosphatase, improved the survival of patients with HPP. Burosumab, a human monoclonal anti-FGF23 antibody, was recently approved as a specific therapy for XLH. We also highlight the current evidence on these two specific therapies’ safety and effectiveness, though long-term data are still needed. Both HPP and XLH are multisystemic disorders that should be managed by multidisciplinary teams. Finally, recognizing these conditions in early stages will enable affected children and young adults to benefit from newly introduced, specific therapies.

Publisher

Bentham Science Publishers Ltd.

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3