Targeting Virus-Induced Reprogrammed Cell Metabolism via Glycolytic Inhibitors: An Effective Therapeutic Approach Against SARS-CoV-2

Author:

Kumar Vinit1,Rani Reshma2,Sharma Dolly2,Singh Mamta1,Gupta Rajat1,Garg Manoj1,Altieri Andrea3,Kurkin Alexander4

Affiliation:

1. Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Noida, Uttar Pradesh, 201303, India

2. Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India

3. Department of Chemistry, Moscow State University, Moscow, 119993, GSP-2, Leninskie gory 1/3, Russia

4. Department of Chemistry, Moscow State University, Moscow, 119993, GSP-2, Leninskie gory 1/3, Russia

Abstract

Abstract: Reprogrammed cell metabolism has been observed in a wide range of virally infected cells. Viruses do not have their metabolism; they rely on the cellular metabolism of the host to ensure the energy and macromolecules requirement for replication. Like other viruses, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) does not own its metabolism, but virus infected cells adopt aberrant cell metabolism. Infected viral use the energy and macromolecules to make their own copies; to do so, they need to increase the rate of metabolism to ensure the requirement of macromolecules. In contrast, the cellular metabolism of noninfected cells is more plastic than infected cells. Therefore, it is essential to examine the virus infection in the context of metabolic alterations of host cells. A novel therapeutic approach is urgently required to treat highly infectious COVID-19 disease and its pathogenesis. Interference of glucose metabolism might be a promising strategy to determine COVID-19 treatment options. Based on the recent research, this mini-review aims to understand the impact of reprogrammed cell metabolism in COVID-19 pathogenesis and explores the potential of targeting metabolic pathways with small molecules as a new strategy for the development of a novel drug to treat COVID-19 disease. This type of research line provides new hope in the development of antiviral drugs by targeting hijacked cell metabolism in case of viral diseases and also in COVID-19.

Funder

SERB, Science and Engineering Research Board

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3