Affiliation:
1. Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH
45435, United States
Abstract
Abstract:
Pancreatic ductal adenocarcinoma (PDAC) is one of the highly aggressive malignancies and the leading cause of cancer-related deaths. Despite recent advancements, the overall therapeutic responses in PDAC patients remained relatively low or short-lived. While KRAS is the most frequently mutated proto-oncogene and represents a critical driver, it remains challenging to target all mutant variants. Thus, strategies to target the downstream signaling cascades (RAS-RAF-MEK-ERK) in PDAC were associated with improved response rates. Nevertheless, the activation of other oncogenic cascades, such as PI3K/AKT/mTOR, has also been documented within the same context and implicated in the development of acquired tumor resistance mechanisms and/or reduced efficacy of therapeutic agents. Therefore, an in-depth understanding of overlapping and intersecting pathways is required to overcome the tumor resistance mechanisms to devise novel approaches to enhance the effectiveness of ongoing treatment options. The current review highlights the mechanistic insights from cellular and preclinical studies with particular emphasis on KRAS (i.e., MEK and ERK)-based approaches for PDAC treatment.
Publisher
Bentham Science Publishers Ltd.
Subject
Drug Discovery,Pharmacology,General Medicine