Saltwater Intrusion Impacts Microbial Diversity and Function in Groundwater Ecosystems

Author:

Houghton Karen M.ORCID,Fournier Mano,Tschritter ConnyORCID

Abstract

Background: Groundwater ecosystem services provided by microbial communities are essential for the maintenance of water quality. For example, nitrate contamination is a recognised health and ecosystem issue in most groundwater systems, often alleviated through microbial processes. The effects of climate change, including increasing salinity from rising sea levels, or over-abstraction, on these communities are largely unknown. Methods: This study uses a combination of culture-dependent (growth curves, isolation of bacteria) and culture-independent (16S rRNA gene sequencing) methods to identify the potential effects of saltwater intrusion on groundwater microbes and their ecosystem functions. Results: Some groundwater microbial communities are negatively impacted by increasing chloride concentrations, including declines in bacteria responsible for nitrate and ammonia removal. These ecosystems should be prioritised for future protection from sea level rise or increased extraction of groundwater for agriculture and other uses. Other microbial communities are stimulated in the presence of chloride, often caused by an increase in abundance of salt-tolerant heterotrophic bacteria using sugars, peptides, or organic acids for energy. Conclusion: There have been no previous studies investigating the impact of chloride on Aotearoa New Zealand groundwaters. The identification of keystone species that are affected by increasing salinity, which have a disproportionately large effect on the ecosystem and low functional redundancy, is essential. Water management decisions about future abstraction limits and defences against sea level rise can be underpinned by robust scientific knowledge about microbial community sensitivity to salinity.

Publisher

Bentham Science Publishers Ltd.

Subject

General Immunology and Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3