One-Step Preparation of Luteolin Nanoemulsion and Evaluation of its Anti-inflammatory Effect in Animal Models

Author:

Karami-Mohajeri Somayyeh1,Hashemi Narges2,Ranjbar Mehdi12,Mohajeri Mohammad3,Sharififar Fariba4

Affiliation:

1. Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

2. Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran

3. Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran

4. Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran

Abstract

Background: Nanoemulsions are promising drug delivery systems for topical application owing to the high transdermal penetration. Objective: Due to the side effects of existing anti-inflammatory drugs, much attention has been paid to natural products such as flavonoids. The aim of this work was to formulate luteolin nanoemulsion (LNE) and to evaluate its anti-inflammatory effect. Methods: LNE was prepared using the low-energy spontaneous emulsion method and characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and dynamic light scattering (DLS). The anti-inflammatory effect of LNE was assessed in formalin and acetic acid-induced inflammation methods (Whittle test). Treatment with LNE (i.p, 4 consecutive days, 40 mg/kg) was compared with diclofenac 25 mg/kg and normal saline. In the formalin test, data were recorded at 1, 2 and 4 hours after formalin injection and in the Wittle test, the extent of Evans blue leakage in the peritoneal cavity was considered as vascular permeability. Results: Formalin-induced edema decreased in the LNE group, but this reduction was not significant (p > 0.05), however, in Whittle test, both LNE and diclofenac significantly reduced Evans blue leakage compared with the group treated with acetic acid alone (p < 0.05). Conclusion: Our results confirm the anti-inflammatory effect of LNE and give up a new platform for the design and development of bio-based carriers for more successful drug delivery.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3