Design, Synthesis and Biopharmacological Profile Evaluation of New 2-((4- Chlorophenoxy)Methyl)-N-(Arylcarbamothioyl)Benzamides with Broad Spectrum Antifungal Activity

Author:

Limban Carmen1,Diţu Lia M.2,Măruțescu Luminița2,Missir Alexandru V.1,Chifiriuc Mariana C.2,Căproiu Miron T.3,Morusciag Laurenţiu1,Chiriţă Cornel4,Udrea Ana-Maria5,Nuţă Diana C.1,Avram Speranta6

Affiliation:

1. Department of Pharmaceutical Chemistry, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia No. 6, Bucharest, 020956, Romania

2. Department of Botanic- Microbiology, Faculty of Biology, University of Bucharest, Research Institute of University of Bucharest- ICUB, Spl. Independentei no. 91-95, Bucharest, Romania

3. The Organic Chemistry Center, Romanian Academy “Costin D. Nenitescu, Splaiul Independentei, 202B, Bucharest, Romania

4. Department of Pharmacology and Clinical Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania

5. National Institute for Laser, Plasma and Radiation Physics, Magurele, Ilfov, Romania

6. Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Spl. Independentei no. 91-95, Bucharest, Romania

Abstract

The emerging antifungal resistance represents a major challenge for the treatment of severe fungal infections, highlighting the need to develop novel and efficient antifungal compounds. This study aimed to synthesize new title compounds and screen them for their antifungal activity in order to generate highly accurate structure - activity relationships of 2-((4-chlorophenoxy)methyl)-N-(arylcarbamothioyl)benzamides and their de novo derivatives and to unveil some of their mechanisms of action by flow cytometry and fluorescence microscopy. The presence of functional groups was confirmed for nine new 2-((4- chlorophenoxy) methyl)-N-(arylcarbamothioyl)benzamides, using experimental and in silico methods. The antifungal activity was assessed against a broad spectrum of 26 yeast and filamentous fungal strains, using qualitative and quantitative assays. The results showed that Candida kefyr has been the most susceptible to all tested compounds, while 1b and 1f induced a strong inhibitory effect on the filamentous fungi Alternaria rubi, Aspergillus ochraceus and A. niger strains growth. The derivative 1c in subinhibitory concentrations alsoincreased the susceptibility of Candida albicans clinical strains to azoles. Predicted drug likeness and pharmacokinetics profiles of most active compounds were compared with the standard antifungal ketoconazole. Furthermore, the potentially more potent 1c and 1f derivatives were designed and studied regarding the chemical structure-biological activity relationship and pharmacokinetics profiles versus ketoconazole. The study confirms that the new benzamide derivatives exhibited an improved pharmacokinetics profile and a good antifungal activity, acting at least by increasing membrane permeability of fungal cells. Our results are recommending them as promising candidates for the development of novel therapeutic alternatives.

Funder

UEFISCDI

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3