Synthesis, Docking and Antimicrobials Evaluation of Novel Pyrazolotriazines as RNA Polymerase Inhibitors

Author:

Abdallah Amira1ORCID,Elgemeie Galal1,Ahmed Ebtsam1

Affiliation:

1. Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt

Abstract

Aims: Producing novel pyrazolotriazines such as pyrazolo[1,5-a][1,3,5]triazine and pyrazolo[5,1-c][1,2,4]triazine derivatives and evaluate their biological activity as antimicrobial agents followed by the Minimum Inhibitory Concentration (MIC) for the most active compounds. Moreover, study the molecular docking and the RNA polymerase inhibitory activity. Background: Pyrazolotriazine derivatives considered one of the most important heterocyclic compounds due to their broad biological activities. Due to the similarity with the purines and thioguanines, the pyrazolo[1,5-a][1,3,5]triazine and pyrazolo[5,1-c][1,2,4]triazine compounds were used as antimetabolic agents. Moreover, many approved drugs contain pyrazolo[1,5- a][1,3,5]triazine ring systems such as (1882L04 and SB-H02), which confirmed the pharmaceutical applications. The key precursor 5-aminopyrazoles 3 which were firstly synthesized by our research group, were used to prepare the novel pyrazolotriazine derivatives. Objective: This study aimed to synthesize novel bioactive pyrazolo[1,5-a][1,3,5]triazine and pyrazolo[5,1- c][1,2,4]triazine derivatives as antimicrobial agents. Also, the Minimum Inhibitory Concentration (MIC) for the most potent compounds was evaluated. On the other hand, the molecular docking study and the RNA polymerase inhibitory activity were measured. Methods: In this work, the 5-aminopyrazoles 3 were used to synthesize 4-amino-7-(arylamino)pyrazolo[1,5- a][1,3,5]triazine-8-carboxamides 7a-c, 4-amino-7-(arylamino)-2-thioxo-1,2-dihydropyrazolo[1,5-a][1,3,5]-triazine- 8-carboxamides 10a-c and 4-amino-3-cyano-7-(aryllamino)pyrazolo[5,1-c][1,2,4]triazine-8-carboxamides 12ac. The newly resultant compounds were evaluated as antibacterial agents by using (Gram-positive bacteria) such as [Staphylococcus aureus and Streptococcus mutans], and (Gram-negative bacteria) such as [Escherichia coli, Pseudomonas aeruginosa, and Klebsiella]. Moreover, the new compounds were evaluated as antifungal agents by using Candids Albicans fungal strain. Also, the Minimum Inhibitory Concentration (MIC) for the most potent compounds was measured. For all the synthesized compounds, the molecular docking studies were recorded and the RNA polymerase inhibitory activity was measured for the high docking score compounds. Results: The results revealed that most of the prepared compounds such as 7b, 10b, 10c, 12a, 12b, and 12c showed moderate activity towards some of the used strains. The MIC evaluations were recorded for the most active tested compounds 7b, 10b, 10c, 12a and 12c. On the other hand, the most potent and the high docking score compounds (10c, 12a and 12c), were measured in vitro to inhibit RNA polymerase enzyme. Conclusion: A number of novel bioactive pyrazolo[1,5-a][1,3,5]triazine and pyrazolo[5,1-c][1,2,4]triazine derivatives were synthesized. All the resultant compounds were screened for their antimicrobials activity and the MIC test was measured for the most potent compounds. In addition, the in vitro to inhibit RNA polymerase enzyme was evaluated for the most active high docking score compounds. Other: Most of the heterocyclic ring systems have remarkable activities in all fields, especially in pharmaceutical applications.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3